ApplePi Update, now with ADB

Greetings dear readers, today we are going to cover something I worked on at least two years ago but always felt there was room for improvement. I’m of course referring to my Apple Classic, super charged with a Raspberry Pi3b motherboard inside. Now before I continue, I want to make one thing clear, I only mod old computers that are beyond repair or have been gifted to me by friends in a state worse than death. So no working or repairable system is ever broken, we don’t rip SID chips off working C64’s around here you know! Anyone found doing so would be given a stern telling off and sent to bed without any beer!

So where was I? Ah thats right, the Apple Classic! So last time we visiting this topic, I had been gifted a partially modded Classic and by partial, I mean it had everything floating loose inside the case and was in dire need of TLC. The amp cut out when you cranked it up or worse took the screen out and the RPI2B was awful slow, emulating an old mac on it was not a nice experience. It now sports a reasonably nippy Pi3B over clocked to 1.3Ghz, emulating an 020 mac the Pi doesn’t even break a sweat, idling at about 45 degrees for both the CPU and GPU. Seriously I’m sat here typing all this on AppleWorks, running Mac OS 7.5.3 and it’s pretty much like using a supercharged Classic on steroids.

I might have to cover compiling and using Basilisk II on a Raspberry Pi as there isn’t that much written online about getting a decent build. It took me a few false starts until I was able to get the emulator working without mouse stutter. This could just be down to the fact I was trying to use a RPi2, which should theoretically be powerful enough, but past experience with my AmigaPi has taught me things are never straight forward.

Ever since I finished or almost finished the ApplePi, I’ve wanted to do more. I wanted to fit an internal ADB socket so I could use a real Apple keyboard for a start. Luckily there is code available online and with a £7 Teensy 2.0 board, I was able to solder together a USB – ADB adapter. ADB is a funny socket, in that its the same pin out as S-video, which means picking up connectors isn’t that hard. Plenty of people have made these adapters but most the time they’re either inside the keyboard or inside a tiny external box. That’s all well and good, but firstly you’re modding the keyboard so that it’s no longer ADB and secondly, I lose USB pens to my sofa on a monthly basis. I’d lose my keyboard adapter and not be able to type on my ApplePi! For me there was no question how I wanted it, the ADB port would go on the back of the computer, as part of the custom laser cut rear I/O shield. It wouldn’t be a true Apple + Raspberry Pi hybrid without ADB nestled along side the USB ports.

My Keyboard of choice Apple Keyboard II

For this mod I opted to use the source code by Shay Green (https://github.com/gblargg/adb-usb), while his code doesn’t include mouse support like some others did. I had think whether using a single button mouse was really all that practical in a modern Linux environment. I think I’d eventually tear my hair out with it’s limitations.

All in the Code

Programming the Teensy board isn’t that hard, you can do it on a Mac, Windows, Linux and the Raspberry Pi. To program a Teensy on a Pi you’ll need something called “Teensy Loader” (https://www.pjrc.com/teensy/loader.html). This software makes programming the tiny boards a breeze. On their website it says to run the program from the linux terminal, however I found this to be a fiddly method, constantly typing the same command in each time. Instead I made a script that allowed me to click an icon to load it up right away. Using a text editor of your choice, Nano (from within the terminal) or Text Editor from

Teensy 2.0

the desktop. Create a text file in the same directory as teensy loader, call it something like “Teensyflash.sh”. Inside the text file paste the following, leaving out the speech marks.

“./teensy &”

Save the file off and close the editor. Now assuming you still have the window open, you should see a new file called “Teensyflash.sh”. Right click on the file and select Properties and then select the Permissions tab. Next to the “Execute:” field, click the drag down menu and select “Anyone”. Click the “ok” button to close the window and save your changes. You’ve now told Linux this file is an executable, so next time you double click on it, Linux will ask if you wish to run it. Tell it yes and the loader should pop up, voila no terminal commands involved.

Using a Teens 2.0 not 2.0++

Unpacked, Shays program is designed to run on a Teensy 2.0++, if you have one of those fine skip this part. However I had a Teensy 2.0, the same board I used to make my custom USB Amiga Joystick last year. The two boards use different chipsets and as such will not run the same programs, you have to compile a HEX specific to 2.0 and 2.0++. If you wish to use a Teensy 2.0 board, you will need to edit a file before you can compile your HEX. Inside the “adb-usb-master” folder, you should find a file called “Makefile”, open it with a text editor and edit it to look like this.

#MCU = at90usb1286 # Teensy++ 2.0
MCU = atmega32u4 # Teensy 2.0/Pro Micro

#FLASH = teensy_loader_cli -mmcu=$(MCU) -w main.hex # Teensy
FLASH = avrdude -p atmega32u4 -c avr109 -P /dev/ttyACM0 -D -U main.hex # Pro Micro

Save the file off and close it, the program is now ready to compile for the Teensy 2.0.

I’m not going to bother covering using Teensyflash, as there is plenty of information online covering the subject, however I do wish to briefly go over building the hex file. This is essentially the program you are going to load in the memory of the Teensy, without it your dead in the water. When I first tried to compile Shay’s ADB software, my Raspberry Pi threw a fit, telling me I was missing files. It took me a while to nail down what I was missing, running the following command in the Linux terminal did clear up my problems.

“sudo apt-get install libusb-dev gcc-avr binutils-avr avr-libcapt-get install libusb-dev gcc-avr binutils-avr avr-libc”

heat shrink, prevents shorts

I think Shay’s code might expect the command line version of Teensy loader to be present in the same folder as his code, because after my Pi successfully compiled the hex, it threw up an error about not finding Flash. Don’t be too concerned about this as the HEX has still been created and is ready to load in the GUI loader.
Once you have Teensy Loader up and running, it’s just a case of loading in your HEX file, pressing a button and a mouse click later the program is stored on the tiny board. With the code loaded in the memory of the Teensy, it’s just a matter of wiring the correct pins together between the board and the four pin s-video connector. Given the size of the connector, I highly recommend using some heat shrink around your solder joints. This will prevent any of your wires shorting and frying your Teensy or Keyboard. A Data line is no place to stick your 5 volt input and certain components might take offense and die as a sign of protest. Then my friend you be wading in the brown smelly stuff without any wellies on! Don’t forget to solder a 1k resister between the data line and your 5v. Apparently some ADB cables suffer with signal drop and the 1k resister helps, if a jobs worth doing, do it right and fit a resistor!

After it was all wired up, I had to modify my rear panel as there was no hole for the ADB port. With a lot of cursing and armed with a dremmel, I was able to make a half decent circular hole, just wide enough to accept the end of the ADB cable. Oh a word on plugging your Teensy to your computer, make sure you use the cable that came with it. I made the foolish mistake of using a spare mini USB cable I had laying around, the darn thing wouldn’t load up properly. Twenty minutes spent testing for breaks in my wiring and it all came down to a tiny USB lead.

Conclusion

When it works, the ADB-USB adapter is amazing, switching from a Bluetooth Apple Keyboard to an original Apple Keyboard II is a massive difference. It feels better, keys are spread out and in general I’m not finger typing any more. It also looks a million times better in front of the ApplePi, seriously you would be forgiven for thinking it was a real Apple computer when Basilisk II is running. Shay Green has my thanks for posting the code

A new panel to cover those holes.

up that made this hack possible. Were it not for him, I wouldn’t be sitting here typing to the sound of klacky keys! Thanks dude!

Next up I shall be designing a rear panel to cover the holes left behind by the old power switch and power socket. In their place, I plan of installing a control panel for the IPS screen, allowing me to change the brightness, contrast etc.


Raspberry Pi 4 Released

Crikey it doesn’t seem so long ago that I was buying a new shiny Pi3 for my AmigaPi and now there’s an all new model out, sporting improved video, CPU, more RAM and no more USB bus bottlenecks, Finally!

I can’t wait to review this bit of kit, but for now, just had to show off some pictures comparing the new board with a boxed Pi3b+

This is the 4gb model, which I think will be going either in the AmigaPi or the Apple Classic, which is a surprisingly good computer for typing on, even with a Pi2b. So imagine upgrading to a Pi with near desktop performance, mind officially blown.

Do you have a project for the Pi4? One that previous models didn’t permit you to do? The additional onboard RAM will undoubtedly make a huge difference to certain projects. I’m excited to see how much of an improvement will make to emulating a PSone or N64, especially with the new VideoCore VI GPU.

So let’s have a look at the packaging!

New Pi4 beside Pi3b+

Not only has the Pi seen a make over, so has the packaging. Included in the shot is a fan SHIM from Pimoroni and a Pi4 heatsink, which it is now highly recommended you use with the new computer. Heat has always been an issue for the Pi, especially the original Pi3, however the Pi4 now sports a full 3A PSU resulting in a little more heat that we’ve seen in previous models. Passive cooling is fine for light workloads, but for most of us that use the Pi for intensive work a chunky heatsink is a must. The stock Pi heatsink is fine, but the bigger you go, the better the heat will be drawn off the CPU and the less CPU throttling you’ll see.

Now let’s open the boxes up and have a butchers inside shall we?

Side by side it’s immediately obvious the Pi4 has seen more than a little bit of tweaking, the PCB is clearly larger and the USB, Ethernet ports have swapped places. Indicative of the fundamental changes the foundation have made to the Pi and the SoC, improving bandwidth to approximately 5Gb/s, not to mention introducing full Gigabit Ethernet and USB 3.0. The latter of which will come in handy for anyone booting Raspbian from an external hard disk

I be making a more detailed write up soon, including some testing to see how it performs.

But for now, let me end it with a nice close up on some silicone!

Till next time, keep on geeking!


MegaPi Zero

 

The MegaPi

Not long ago I bought myself a NESpi and was telling a friend about it. She went on to ask me if there was a Sega equivalent, as her brother was an avid Sega fan growing up. Sadly I had to tell her there wasn’t but that added, that building such a console wouldn’t be that difficult, me and my big mouth. Thus I found myself with a new project on the drawing board, added to all the other projects I was tinkering with. When will I learn?

Having built the NESpi and my Picade, I knew EmulationStation could easily accommodate my needs. Not only can it emulate the MegaDrive, but the Master System, GameGear and SegaCD as well. The only real question was what platform I would use for all the grunt work. A Pi3 seemed a little overkill, true it would handle anything thrown at it, but it also hiked up the cost of the build and I was trying to keep to a budget. I might have been able to pick up a second hand Pi2b, however they seem to sell close the what they cost new. I didn’t want to go down the clone route as support isn’t as good, so that left me with one option, the Pi Zero. I’d never tried using a Zero for playing games, messing about with electronics yes, but gaming just seemed a little to demanding for BCM2835 processor. However if you read up on the Zero, for such a tiny board, you realize its actually quite powerful. Clock at 1Ghz, the CPU is approximately 40 percent faster than the same chip inside the original RaspberryPi. Tests have shown the Zero operates roughly four times faster then the original Pi. While I was never going to see Pi2 performance, it would hopefully be enough to emulate the MegaDrive. It seems a little crazy that a 1ghz 32bit processor shouldn’t be capable pf running 30 year old software, but we have to keep in mind, that the Zero is being call upon to accurately emulate a whole console. Translating sound, display, input on the fly, into something close to the real thing.

 

usbhub
Building

From the beginning my intention was to alter the MegaDrive very little, in fact I wanted to replicate the consoles original functions. Allowing the Power and Reset buttons to work pretty much in the same way they had before. I was able to make this possible using Pimoroni’s on/off shim, this tiny board sits atop the Pi’s GPIO header and allows you to safely shutdown the computer with the touch of a button. It also comes with through holes, allowing you to solder your own button to the board. The shim is pretty versatile, you can either use the included header block or solder the shim directly to the GPIO header, thus freeing up the GPIO pins if say you wanted to use another HAT, like a PHAT DAC. Once installed, for the shim to function you must plug power in to it directly and not in to Raspberry Pi. That way power is being fed through the shim in to the Pi via the GPIO header, putting the shim in control of feeding power to the Pi. The added bonus to all of this, is that your bypassing the Pi’s annoying poly fuses.

onoffshim
With the power sorted out, the next step was the Reset button. The Zero, like other Pi’s comes with a pair of through holes labeled ‘RUN’. If you short them, the Pi’s CPU will halt what it’s doing and reset the system. Ordinarily this isn’t something I would recommend doing regularly, as you run the risk of corrupting your SD card. However, if your running a Pi and for what ever reason it locks up. If your only input devices are two joypads, a reset button might just be what you need to get back on track. This was first time I’d ever wired up a reset button on the Pi and later was thankful I had, as on one or two occasions EmulationStation locked up because I’d done something stupid.

Out of the box, the Zero comes with only a single micro USB port, which isn’t much good if you want a two player game of GoldenAxe. To work around this problem, I used a compact USB hub, specifically suited for the Zero as it came with molded micro USB connector and not a full size USB plug. I then used a set of cables to extend two USB ports to the front of the console, where the joystick ports had once been. I also made a custom power lead, one end going to the rear of the console as a dedicated power socket and the other going in to the on/off shim. Always use thick gauge wire when extending the Pi’s power socket as it only take a little voltage drop for the dreaded ‘undervolts’ icon to appear in the top right hand corner of your screen.
backpanel
For the rear panel of the MegaPi, I designed a custom I/O panel to replace the Megadrives existing RF and Power Jack with micro USB and HDMI. After cutting out the existing panel, I hot glued the laser cut acrylic panel in place, along with the cables coming from the Zero. I applied a copious amount of glue to both sockets, especially the HDMI port as I found it a little tight when I was hooking up my TV.

Press My Buttons

I’ve already mentioned how I was able to get functional Power and Reset, but getting both to work with the cases existing buttons was a challenge unto itself. First I began with two tall 6mm tall micro switches, which I soldered to strip board and later trimmed to fit the area under both red buttons on the case. It took a little trial and error, trimming the height of both micro switched until they worked properly with the buttons. When I had both working to my satisfaction, I used my trusty glue gun to affix them to the underside of the top lid. Glue guns are by far, the makers best friend!

switches
With the both switches in situ, all that was left to do was connect them up to the pi itself. A quick test, proved both worked as desired and so the next task was setting up the software.

EmulationStation

Without a doubt, building the Megapi would have been a very different story if it were not for EmulationStation. Setup and configuration of this software has been made very simple, allowing even the most inexperienced to follow it. Configuring the Sega style USB controllers I’d bought was a little fiddly but trial and error eventually prevailed and I had both working as desired. I was even able to setup a custom loading screen and Sega themed booting screen. The first time I came to try out a game, I was really surprised by the performance. The Zero handled most games I threw at it, struggling only once or twice, I doubt very much it could handle any of the 32x or SegaCD titles. But as a bog standard Megadrive it copes pretty well, better then a £5 computer really ought to. But it just goes to show what good value the Zero is and what it possible with such a cheap, tiny computer. I’m really glad the foundation developed the Zero, with the increasing speed of the larger Pi3b and now 3b+, it stands as an affordable foot in the door. Had the Zero not be around, I probably would have tried to buy a cheap second hand Pi2. For the simple fact that the Pi3 was too expensive and powerful for my needs. That being said, I’m not even certain the larger Pi form factor would fit inside the MegaDrive II case.

Conclusion

This was a fun project and not one I would have made had it not been for my friend asking. Truth be told, once built, I grew really attached to it and was sad when it came time to hand it over for my friend to give her brother. From what I gather though, he really loved his birthday present. Hopefully he’s reliving his childhood, maybe even having a mate over for a few beers a game of sensible soccer or Sonic and Tails.

The on/off shim is available via the Pimoroni website at

https://shop.pimoroni.com


RPi SD Card Failure & Booting from USB

USBVSD

 

Card corruption isn’t anything new on the RPi, if your a Raspberry Pi owner it is a fair bet that you shall encounter it eventually.

Over the years ever since owning my first Pi, I had to deal with the occasional segmentation fault. But I’d never encounter a full blown SD card failure until the other day, when quite unexpectedly the PiDP8/i decided to have a system melt down. The first signs indicating something wasn’t quite right, was when I discovered my fail2ban jail log was corrupt, full of complete gobbledygook. After a reboot of the server, I discovered everything was back to normal or so it had seemed. The next indication problems lay ahead was when I noticed files I’d previously deleted had reappeared on the SD card. Now if there’s one thing Linux is good at letting the user do, it’s delete precious files without much chance of recovery. I once deleted an entire partition of my hard drive by mistake and yes, spent what was left of the night reinstalling Xebuntu. Linux is a powerful OS in the right hands but for the experienced it can be a steep learning curve of mistakes and mishaps.

After spending a full day working on my SD card, I discovered sure enough that the internal 8GB card had died a death. I read from the drive, but could neither format or re-partition it.

So what now? Well my next step is going to be getting my hands on a new SD Card, but I’m not so certain I feel comfortable using it as the primary storage on my PiDP8/i server. Everything I’ve read online indicates using SD cards for prolonged periods is not a great idea, mainly due to the limitations of the technology which doesn’t lend it self to constant read / writes. It’s worth remembering that ever since the first compact flash drive, memory cards were originally intended for cameras and PDA devices, neither of which really hammer the SD card unlike Linux. SD cards have a finite number of read / writes, from the time you plug it in, your memory card is degrading. On a short time project this isn’t a problem and there is evidence to suggest capacity does play a part, with larger cards such as 32, 64 and 128gb lasting longer then 8gb ones. Still if I want my server to be online 24/7, I’m better off finding a more reliable and permanent solution.

A hard drive is one I guess, but a little bit overkill for the tiny PiDP8/i. Which is why I’ve spent the past few days looking up ways to boot the Pi2 model b motherboard from a USB flash drive. Research suggests boot time will be faster and reliability significantly better then using SD. So in my next article I’m going to cover the process of setting up a RPi2 model B with the OS installed on USB pen. If your a Pi3 owner you have two choices, you can follow what I’m doing and it should work just fine. But unlike earlier models, the Pi3 can boot directly from USB by altering the OPT within firmware. Once enabled the Pi will search SD and USB until it finds a bootable partition.

 


Christmas Picade Giveaway

bmv-picade

Greetings to all you t’interweb surfers, its that time of year again and here at ByteMyVdu we like sharing the festive spirit. I say we, but really it’s me, muggins sitting at the keyboard doing everything, using the royal ‘we’ just sounds better!

Over the past 12 months I’ve built a PiDP8i, a RetroFlag NESPi, Modded a 60s radio and played about with a Sinclair QL. I’ve also built another Amiga 600Pi, refined the designed and improved on what I did the first time around and after all of that, I’ve yet to upload it to my site.

All that aside its Christmas, a time for good will and giving friends and family gifts wrapped in pretty paper. So as a thank you to the poor soul who accidently set their home page to my site, I’m releasing a spanking new set of Picade cabinet artwork. Drawing inspiration from the 80s, these templates will turn any unadorned Picade in to retro throwback. I’ve been asked a couple of times over the past year about my Picade art, so I decided to make some new never seen before templates. There’s already quite a few out there on the Pimoroni forum but a lot of them are either using copyrighted material or trying to replicate an existing arcade cabinet such as Asteroids or Bubble bobble. That’s alright, but I wanted something a little more unique to the Picade, hopefully that’s what I ended up with. Either way I hope someone out there will have fun with them, Merry Christmas you guys! 🙂

Legal fluff – These templates are offered as is and are strictly intended as freeware, for none profit purposes.

https://drive.google.com/open?id=0Bw_gYOWg5M0dWFZGYVdSb0FoeVk

 

Picade2_controls

 

 

 

 


Picade Build and Cabinet Art

banner

Produced by Pimoroni, a British company based in Sheffield, the Picade is an all singing and dancing tabletop arcade cabinet that can be put together in an afternoon. For £180 you get everything needed to build your own working cabinet (minus the Raspberry Pi) such as:

  • Black powder-coated cabinet panels
  • Picade PCB (Arduino compatible with stereo 2.8W amplifier) pre-loaded with the Picade software.
  • LCD panel mount with protective overlay
  • 8″ LCD panel & driver board
  • 2x speakers
  • 3.5mm stereo panel mounted headphone socket
  • Attractive decals for the marquee and controls
  • HDMI, audio, and USB cables
  • A proper arcade joystick
  • Twelve micro-switch arcade buttons
  • Custom assembled wiring looms
  • All other fixings, fastenings, nuts, and bolts

The kit is primarily geared towards users of the Raspberry Pi, but that doesn’t mean you couldn’t use it with a mini ITX board or Odroid. In fact the rear door on which you mount the logic board has markings for several different models of computer not just the Pi. Anticipating the needs of their customers, Pimoroni have designed the kit with the hacking and modding community in mind, something they do with a lot of their products.

picade-parts_1024x1024

Everything you need to make your own arcade

In 2012 when Pimoroni began their Kickstarter for the Picade I had an opportunity to try a working unit, needless to say the experience was enough to leave me wanting one. It wasn’t until the early last year when I finally got one of their kits but sadly didn’t have any time to assemble it. So the kit sat waiting on my to do list till October came around, when finally my partner and I put it together over several evenings. Assembling the Picade is pretty straight forward so long as you follow the PDF guide provided on Pimoroni’s website. There is also a video guide but in my opinion it is in need of updating, as it led us astray more than once. In the end we resorted to consulting the PDF exclusively, my partner reading the instructions as I placed the pieces together. Contrary to what the video tutorial suggests, make sure to tighten all the screws and nuts using a screw driver, otherwise your cabinet will soon begin to wobble and come apart as mine did after a few plays of DigDug.

The black power coated finish of Picade really sets it off with an old arcade feel, the buttons and joystick are of good quality and fairly responsive to use. At some point I will likely swap them out for more 80s recessed style buttons, but for now they get the job done and look fine.img_20161123_154601

The Picade comes bundled with an 8” flat panel LCD screen. Originally the kit was available with a 12” panel but I understand supplies dried up and Pimoroni have been unable to source any more at a reasonable price. At first when I removed the panel from its packaging I thought it was mighty small and had some misgivings about its effectiveness for playing games on, but honesty I hadn’t need for concern. The 8” panel compliments the cabinet really well and once your in playing Pacman or Pole Position you really don’t notice it. The picture is clear, sharp and the colours a vibrant, my only regret is the absence of any scanlines, but that’s more a personal preference and something I can probably fix within the Retro Pie software.

With the cabinet built, it is just a case of flashing an SD card with the relevant Retro Pie image, which you can download via their website @ https://retropie.org.uk. Setup is relatively painless and straight forward and should see you up and running in no time at all. Something I did discovered on my first outing, is that RetroPie has more than one Mame emulator to choose from and some ROMs work better in one than they do the other. If you find like I did that a great many of img_20170217_185138your ROMs aren’t working, you may wish to try using the other Mame emulator. The reason this happens is down to the chipsets the Mame is running, different revisions can sometimes expect different files to be present within the ROM archive. Newer revisions tend to be more compatible but unfortunately the one available on Raspbian isn’t, which is why RetroPie comes with more then one Mame emulator. Swapping between the different versions can be as simple as copying your ROMsets to the appropriate folder on your SD card. It is also possible to change it from within Retropie, just after selecting your ROM the option appear on screen to change the default settings, this also includes which version of Mame is used to run the selected ROMset.

When put together, the Picade and Retro Pie compliment one another well and one can hardly imagine one without the other, both are polished and easily accessible products.

Unfinished Business

img_20170213_151551When I began to assemble the Picade, I knew from the get go that I wanted to design some custom cabinet art for it – something that harkened back to the days of my childhood with crazy neon colours and funky 8 bit sprites. One thing about the Picade is that the only decals that come with it are for the marque and the control panel, the sides of the cabinet are left alone. As pretty as the powder coating is, I couldn’t help feel there was something better to do with them, such as cover them up with something bright and retro! So I went about designing the art on my recently aqcuired 15” Powerbook G4. Anyone who says PPC has had its day can go suck a lemon as far as I’m concerned, as this laptop not only oozes style but clocking in at 1.55Ghz it runs Photoshop without breaking a sweat.

img_20170119_162942As you can probably see in the photos from an early stage there was a very distinct 80s theme going on. One thing I had to keep in mind was to make sure the decal art lined up with the side panels on the cabinet, as I wasn’t just contending with the outside edge of each panel but also the various screw holes and speaker grills that the decals would be covering.

The side art is protected by 1mm thick sheet of clear acrylic that has been cut out to the same shape and size of both MDF side panels. Eventually I plan on making the marquee backlit so that the Picade logo and colours are more vivid to the eye.

IMG_20170213_154944.jpg


Back for 2017

eightbit_eightbit4

 

Hello dear reader! Did you miss us?

BMV is back for another year and I have a lot of fun articles I’d like to cover and maybe we can fit in a few interviews this year from people active in the community. I’m sorry the blog has been a bit quiet but I was away busily tinkering, working on my Atari Lynx video conversion, making an AmigaPi 1200 and several more USB tank mice for friends who wouldn’t stop pestering me for one after seeing the one I’d built I’ve also been playing with a Powerbook 180 and discovering the pitfalls of LCD tunnelling which the entire 100 series seems to suffer from.

Blasting away from 2016 is my Picade build which I finished just before Christmas, now in 2017 I put the finishing touches to the cabinet with some retro electric 80s art. Keep your eyes peeled as I’ll be offering up free cabinet decal art for anyone looking to deck out their Picade in proper 80s style!